6-1-17

Aim: SWBAT review for the final exam.

Do Now: Estimate the volume and surface area of each

figure.

HW: 3-D Assessment tomorrow (Open notes)

Final Review Packet due tomorrow

Rectangular Pyramid

Find the estimated surface area.

$$SA = B + \frac{1}{2}PX$$

 $SA \approx (9.7) + \frac{1}{2}(9+7+9+7)(14)$
 $SA \approx 63 + \frac{1}{2}(32)(14)$
 $SA \approx 63 + 224$
 $SA \approx 287 \text{ cm}^2$

Find the estimated volume.

Triangular Pyramid

Find the estimated surface area.

$$SA = B + \frac{1}{2}PL$$

 $SA \approx (\frac{4.4}{2}) + \frac{1}{2}(4+4+12)(20)$
 $SA \approx 8 + \frac{1}{2}(20)(20)$
 $SA \approx 8 + 200$
 $SA \approx 208 \text{ cm}^2$

Find the estimated volume.

$$V = \frac{1}{3}Bh$$

 $V \approx \frac{1}{3}(\frac{4.4}{2})(14)$
 $V \approx \frac{1}{3}(8)(4)$
 $V \approx 37\frac{1}{3}$ cm³

Evaluating Expressions using the Order of Operations: You MUST show your substitution, but you can use your calculator to compute the answer.

Evaluate each expression when a = 2, b = -3, and c = $\frac{1}{3}$

95)
$$4a + c$$
 $4 \cdot 2 + \frac{1}{3}$
 $2 \cdot -3 - 3 \cdot \frac{1}{3}$
 $1 \cdot \frac{1}{3}$
 1

Unit 2: Expressions, Equations & Inequalities

When translating into mathematical expressions . . .

- · Identify the key words
- · Translated in the exact order they are read
- Switch the order ONLY when you read: "less than", "more than", "fewer than", "subtracted from" and "taken away from"
 - Place parentheses around sums and differences

Translate each verbal phrase or sentence into an algebraic expression.

- 1) 12 more than a number n n + 12
- 2) A number, n, increased by seven $\frac{n+7}{}$
- 3) The product of 15 and × 15X
- 4) Twice y decreased by 20 2y 20
- 5) Seven more than the quotient of x and -2.
- 6) The difference of twice n and three $\frac{(2n-3)}{3(12+x)}$
- 7) Three times the sum of 12 and \times 3 (12 + \times)

Term - a part of an expression that is separated by a "plus" or "minus" sign.

Ex: $3x + 4y \rightarrow 3x$ is a term & 4y is a term

Coefficient - a number in front of a variable

Ex: $4n \rightarrow 4$ is the coefficient and n is the variable

Constant Term - a term that has a number but no variable.

Ex: 5, 7, 100, 2,000

Like Terms - terms with the EXACT same variables and EXACT same exponents

Examples: 5y and 6y $5x^2$ and $6x^2$ 10 and -2

Non-examples: 5x and 3y 2x and 3 -4x and $3x^2$

List the terms, like terms, coefficient(s), and constant(s) for the following expressions.

Terms: 5x, 2y, -x, 3y, -7

Terms: -4a, -10b, 8, -2a, 7

Like Terms: $\frac{5x}{and} = \frac{-x}{2y} = \frac{2y}{and} = \frac{3y}{2}$ Like Terms: $\frac{-4a}{and} = \frac{8}{and} = \frac{8}{2}$

Coefficient(s): 5, -1, 2, 3Coefficient(s): -4, -10, -2

Constant(s):

9) -4a - 10b + 8 - 2a + 7

DISTRIBUTIVE PROPERTY!!!

$$a(b + c) = ab + ac$$

Make sure you multiply every number in the group (parentheses) by that number.

Ex.
$$-2(x+3) = -2 \cdot x + -2 \cdot 3$$

= $-2x - 6$

If distributing a negative value, all the signs on the inside become opposite. Rewrite using the Distributive property.

$$10x + 30$$

$$5(2x+6)$$
 11. $-5(2x+6)$ 12. $5(2x-6)$ 13. $-5(2x-6)$

13.
$$-5(2x-6)$$

-10x + 30

$$10x + 30 -10x - 30 10x - 30 -10x + 30$$
14. $x(y+z)$ 15. $x(-y+z)$ 16. $-x(y-z)$ 17. $-x(-y-z)$

$$xy + xz -xy + xz$$

$$-xv + xz$$

$$-xy + xz$$
 $xy + xz$

Simplify Expressions

- STEP 1 \rightarrow Get rid of parentheses by using the Distributive Property
- STEP 2 -> Combine like terms (if they have the same variable raised to the same power)

Simplify each expression.

$$7x + 2$$

$$-2y + 5z$$

$$2y + 9z - 7$$

$$5x + 8y - 6$$

$$-a - 13b + 7$$

23)
$$5(4 + 2y) - 27 - 3y$$
 20 + 10y - 27 - 3y

Factoring

The **first step** to factoring is to find the GCF of the terms:

The **second step** to factoring is to factor out the GCF.

- First write the GCF, then begin your parenthesis.
- To figure out what goes inside the parenthesis, divide each term by the GCF
- Remember the final answer will look like the distributive property.

Example: Factor the expression 10x + 20

Step 1: Find the GCF

Factors of:

10: 1, 2, 5, **10**

20: 1, 2, 4, 5, **10**, 20

These two terms DO NOT have a variable in common, so the GCF is 10.

Step 2: Factor

10(x + 2)

10x divided by 10 equals x. 20 divided by 10 equals positive 2

Find the Greatest Common Factor (GCF) of each pair of terms.

24) 25x and 30y

25) 3x and 21xy

26) 4y and 16

27) 12y and 28xy

GCF: 5

GCF: 3x

GCF: 4

GCF: 4v

Factor each expression. Remember, when you factor you are dividing each term by the GCF. Your final answer should look like the Distributive Property.

28) --15m + 50 GCF: 5

29)

2x - 4xy GCF: 2x (30) 15a - 20b + 10c GCF: 5

5(-3m + 10)

2x (1 - 2y)

Simplify and Factor. (First simplify each expression, THEN factor.)

$$6x + 18$$

 $6(x + 3)$

$$9x + 27y$$
$$9(x + 3y)$$

33)
$$8x - 2(3x - 4) + 2$$

Solving Multi-Step Equations

Step 1: Get rid of any parentheses

How? Use the DISTRIBUTIVE PROPERTY!!!

$$a(b + c) = ab + ac$$

Make sure you multiply every number in the group (parentheses) by that number.

Ex.
$$-2(3+x) = -6 - 2x$$

Step 2: Combine Like-Terms on the Same side of = sign.

(Same Side Use Same Operation)

Ex.
$$\sqrt{5x + 2x} + 12 = -10x + 16 + 17$$

 $-3x + 12 = -10x + 33$

Step 3: Get All Variables on One Side & Constants on the Other Side

(Opposite Sides Use Opposite Operations)

Ex.
$$-3x + 12 = -10x + 33$$

 $+10x = +10x$
 $7x_{-} + 12 = 33$
 $-12 = -12$
 $7x = 21$

Step 4: Solve for the Variable

Ex.
$$\frac{7x}{7} = \frac{21}{7}$$

 $x = 3$

** 3-Step Check:

- 1) Rewrite the equation
- 2) Replace the variable
- 3) PROVE (Do the math!)

Solve and check each equation algebraically. Show all work!

34)
$$4c - 6 = 2$$

$$4c = 2
+ 6 + 6
4c = 8
4
(c = 2)$$

35)
$$-4 = 2x - 2$$

$$\begin{array}{c}
0 = 8z + 8 \\
-8 \\
-8 \\
-8
\end{array}$$

$$\begin{array}{c}
-8 \\
-1 = z
\end{array}$$

** Checks for #'s 1 - 4 on Next Slide **

check #1

$$\bigcirc$$
 4c - 6 = 2

check #3

$$\bigcirc 1$$
 -5 = 3m - 14

$$3 -5 = 9 - 14$$

 $-5 = -5\sqrt{}$

check #2

check #4

$$0 = 8z + 8$$